Matching typed and untyped realizability ( Extended abstract )
نویسنده
چکیده
Realizability interpretations of logics are given by saying what it means for computational objects of some kind to realize logical formulae. The computational objects in question might be drawn from an untyped universe of computation, such as a partial combinatory algebra, or they might be typed objects such as terms of a PCF-style programming language. In some instances, one can show that a particular untyped realizability interpretation matches a particular typed one, in the sense that they give the same set of realizable formulae. In this case, we have a very good fit indeed between the typed language and the untyped realizability model—we refer to this condition as (constructive) logical full abstraction. We give some examples of this situation for a variety of extensions of PCF. Of particular interest are some models that are logically fully abstract for typed languages including non-functional features. Our results establish connections between what is computable in various programming languages, and what is true inside various realizability toposes. We consider some examples of logical formulae to illustrate these ideas, in particular their application to exact real-number computability. The present article summarizes the material I presented at the Domains IV workshop, plus a few subsequent developments; it is really an extended abstract for a projected journal paper. No proofs are included in the present version.
منابع مشابه
A universal realizability model for sequential functional computation
We construct a universal and even logically fully abstract realizability model for the sequential functional programming language of call-by-name FPC. This model is defined within the category of modest sets over the total combinatory algebra L of observational equivalence classes of closed terms of the untyped programming language λ+Error. This language is untyped lazy call-by-name lambda-calc...
متن کاملTyped vs. Untyped Realizability
We study the domain-theoretic semantics of a Church-style typed λ-calculus with constructors, pattern matching and recursion, and show that it is closely related to the semantics of its untyped counterpart. The motivation for this study comes from program extraction from proofs via realizability where one has the choice of extracting typed or untyped terms from proofs. Our result shows that und...
متن کاملLabeling techniques and typed fixed-point operators
Labeling techniques for untyped lambda calculus were developed by Lévy, Hyland, Wadsworth and others in the 1970’s. A typical application is the proof of confluence from finiteness of developments: by labeling each subterm with a natural number indicating the maximum number of times this term may participate in a reduction step, we obtain a strongly-normalizing approximation of β, η -reduction....
متن کاملAdding Algebraic Rewriting to the Untyped Lambda Calculus (Extended Abstract)
We investigate the system obtained by adding an algebraic rewriting system R to an untyped lambda calculus in which terms are formed using the function symbols from R as constants. On certain classes of terms, called here \stable", we prove that the resulting calculus is connuent if R is connuent, and terminating if R is terminating. The termination result has the corresponding theorems for sev...
متن کاملProving Properties of Typed Lambda-Terms Using Realizability, Covers, and Sheaves (Preliminary Version)
We present a general method for proving properties of typed λ-terms. This method is obtained by introducing a semantic notion of realizability which uses the notion of a cover algebra (as in abstract sheaf theory). For this, we introduce a new class of semantic structures equipped with preorders, called pre-applicative structures. These structures need not be extensional. In this framework, a g...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2000